
A 2nd GENERATION PARALLEL
ADVANCING FRONT GRID GENERATOR

Rainald Löhner

CFD Center, Dept. of Computational and Data Science
M.S. 6A2, College of Science, George Mason University
Fairfax, VA 22030-4444, USA
rohner@gmu.edu

Summary. A scalable, parallel advancing grid generation technique has been de-
veloped for complex geometries and meshes with large size variations. The key in-
novation compared to previous techniques is the use of a domain-defining grid that
has the same fine surface triangulation as the final mesh desired, but a much coarser
interior mesh. In this way, the domain to be gridded is uniquely defined, overcoming
a shortcoming of previous approaches. This domain-defining grid is then partitioned
according to the estimated number of elements to be generated, allowing for a bal-
anced distribution of work among the processors. The domain defining grid is also
used to redistribute the elements and points after grid generation, and during the
subsequent mesh improvement.
Timings show that the proposed approach is scalable and able to produce large grids
of high quality in a modest amount of clocktime.
With the proposed parallel grid generator, a major impediment to a completely
scalable simulation pipeline (grid generation, solvers, post-processing) has been re-
moved, opening the way for truly large-scale computations using unstructured, body-
fitted grids.

1 INTRODUCTION

The widespread availability of parallel machines with hundreds of thousands
of cores and very large memory, solvers that can harness the power of these
machines, and the desire to model in ever increasing detail geometrical and
physical features has led to a steady increase in the number of points and ele-
ments used in field solvers. During the 1990s, grids in excess of 107 elements be-
came common for production runs in Computational Fluid Dynamics (CFD)
[4, 5, 28, 69, 51] and Computational Electromagnetics (CEM) [17, 54]. This
tendency has continued during the first decade of the 21st century, roughly
following Moore’s law, i.e. gridsizes have increased by an order of magnitude
every 5 years. Presently, grids in of the order of 109 elements are commonly
used for leading edge applications in the aerospace, defense, automotive, naval,



2 Rainald Löhner

energy and electromagnetics sectors.
While many solvers have been ported to distributed parallel machines, grid
generators have, in general, lagged behind. One can cite several reasons for
this:

a) For many applications the CPU requirements of grid generation are orders
of magnitude less than those of field solvers, i.e. it does not matter if the
user has to wait several hours for a grid;

b) (Scalar) grid generators have achieved a high degree of maturity, general-
ity and widespread use, leading to the usual inertia of workflow (‘modus
operandi’) and aversion to change;

c) In recent years, low-cost machines with few cores but very large memories
have enabled the generation of large grids with existing (scalar) software;
and

d) In many cases it is possible to generate a mesh that is twice (2d times)
as coarse as the one desired for the simulation. This coarse mesh is
then h-refined globally. Global h-refinement is easily ported to multicore
and/or distributed memory machines. Moreover, many field solvers of-
fer h-refinement as an option. With only 1 level of h-refinement a mesh
of 125 Mels increases to 1 Bels, and to 15.6 Mels with two levels of h-
refinement.

For applications where remeshing is an integral part of simulations, e.g. prob-
lems with moving bodies [37, 52, 53, 6, 30, 43, 24] or changing topologies
[7, 8], the time required for mesh regeneration can easily consume a significant
percentage of the total time required to solve the problem. This percentage
increases drastically if the grid generation portion is not completely paral-
lelized. Faced with this situation, a number of efforts have been reported on
parallel grid generation [38, 14, 62, 15, 55, 20, 10, 56, 69, 9, 11, 22, 61, 47, 12,
13, 29, 26, 64, 1, 2].
The two most common ways of generating unstructured grids are the Ad-
vancing Front Technique (AFT) [57, 58, 35, 36, 59, 60, 27, 19, 42, 47] and the
Generalized Delaunay Triangulation (GDT) [3, 21, 67, 68, 50, 10, 9, 12, 64, 1].
The AFT introduces one element at a time, while the GDT introduces a new
point at a time. Thus, both of these techniques are, in principle, scalar by na-
ture, with a large variation in the number of operations required to introduce
a new element or point. While coding and data structures may influence the
scalar speed of the ‘core’ AFT or GDT, one often finds that for large-scale
applications, the evaluation of the desired element size and shape in space,
given by background grids, sources or other means [48] consumes the largest
fraction of the total grid generation time. Furthermore, the time required
for mesh improvements (and any unstructured grid generator needs them) is



Parallel Advancing Front 3

in many cases higher than the core AFT or GDT modules. Typical speeds
for the complete generation of a mesh (surface, mesh, improvement) on cur-
rent Intel Xeon chips with 3.2GHz and sufficient memory are of the order of
0.5-2.0 Mels/min. Therefore, it would take approximately 2,000 minutes (i.e.
1.5 days) to generate a mesh of 109 elements. Assuming perfect paralleliza-
tion, this task could be performed in the order of a minute on 2,000 processors,
clearly showing the need for parallel mesh generation.
Unstructured grid generators based on the AFT may be parallelized by in-
voking distance arguments, i.e., the introduction of a new element only affects
(and is affected by) the immediate vicinity. This allows for the introduction
of elements in parallel, provided that sufficient distance lies between them.
Nearly two decades ago (when useful distributed memory parallel machines
first appeared) Löhner, Camberos and Merriam [38] introduced a parallel AFT
for 2-D applications. This was extended shortly afterwards to 3-D by Shostko
[62]. The spatial distribution of work was based on the subdivision of a rel-
atively fine background grid. While used for some demonstration runs, this
scheme was not general enough for a production environment. The background
grid had to be adapted in order to be sufficiently fine for a balanced workload.
As only background grid elements covering the domain to be gridded were al-
lowed, complex in/out tests had to be carried out to remove refined elements
lying outside the domain to be gridded. Furthermore, element size specified at
CAD entities could not be ‘propagated’ into the domain, as is the case in the
scalar AFT, disabling an option favoured by many users and rendering many
grid generation data sets unusable. The otherwise positive experience gained
with this parallel AFT, and the rise of shared-memory machines, prompted
the search for a more general parallel AFT. The key requirement was a par-
allel AFT that modified the mature, scalar AFT as little as possible, while
achieving significant speedups on common parallel machines. This led to a
shared-memory parallel AFT (based on OpenMP) that applied the paral-
lelism at the level of the current front, and not globally [47]. This scheme
has been used for more than a decade, and has yielded a means of speeding
up grid generation by an order of magnitude. Given that the parallelism is
invoked at the level of the front, the achievable scalability is clearly limited.
The advent of machines with hundreds of thousands of processors has led to
a re-evaluation of the parallel grid generation options. It is clear that for ma-
chines with such a high number of processors, every effort has to be made to
extract the maximum parallelism possible at every stage of the grid genera-
tion. This means that the parallelism should not be front-based, but

volume-based. The easiest form of achieving volume-based parallelism is by
using a grid to define the regions to be meshed by each processor. Optimally,
this domain-defining grid (DDG) should have the same surface triangulation
as the desired, fine mesh, but could be significantly coarser in the interior.
In this way, the definition of the domain to be gridded is unique, something
that is notoriouly difficult to achieve by other means (such as background
grids, bins or octrees). This domain-defining grid is then split so that in each



4 Rainald Löhner

subdomain a similar number of elements is generated.

2 DESIRED FEATURES FOR THE
NEXT-GENERATION PARALLEL MESHER

Before describing the proposed 2nd generation parallel grid generator, we list
the main characteristics such a tool should offer:

- Use of the (fine) surface mesh specified by the user: this means that no
global h-refinement can/needs to be used; the key assumption is that this
surface mesh can not be coarsened and then subsequently h-refined;

- Maximum re-use of existing scalar grid generation software: it takes a
decade to build a robust, production-quality 3-D grid generator; therefore,
being able to reuse existing software would be extremely desirable;

- AFT or GDT: the two main ways of generating general unstructured grids
are the advancing front technique (AFT) and the Generalized Delaunay
Triangulation (GDT); the parallel grid generator should be able to use any
of these techniques;

- Maximum re-use of existing grid generation features/options, such as:
- mesh size specified via background grid;
- mesh size specified via sources;
- mesh size specified via CAD entities (points, lines, surfaces, domains);
- optimal space-filling tet options;
- link to boundary layer grids;

- Use of multicore parallel machines: given that massively parallel machines
will be composed of multicore chips, it would be highly desirable to exploit
effectively this type of architecture.

3 2nd-GENERATION PARALLEL MESHER

The key idea of the proposed 2nd-generation parallel mesh generator is the
use of two levels of grid generation:

- One to subdivide space into regions that will generate approximately the
same number of elements, and

- One that performs the parallel grid generation.

These two tasks, could, in principle, be carried out with different grid gener-
ation techniques/codes, making the approach very general. The procedure is
shown conceptually in Figures 1a-c.



Parallel Advancing Front 5

Coarse Mesh (To Define Space to be Gridded) Load Balancing for Fine Mesh Generation

After Load Balancing

Figure 1 Splitting of Domain Defining Grid

c) After Meshing Interfaces 1/4, 2/3

a) After Meshing Each Subdomain b) After Meshing Interfaces 1/2, 3/4

Figure 2 Parallel Grid Generation Technique



6 Rainald Löhner

4 BASIC ADVANCING FRONT TECHNIQUE

Before going on, we recall for the sake of clarity and completeness the main
algorithmic steps of the advancing front technique:
Assume given:

- AG1: A definition of the spatial variation of element size, stretchings, and
stretching directions for the elements to be created. In most cases, this is
accomplished via a combination of background grids, sources and CAD-
based information [48].

- AG2: A watertight, topologically consistent triangulation that is con-
mesurate with the desired element size and shape. This is the so-called
initial front.

- AG3: The generation parameters (element size, element stretchings and
stretching directions) for the faces of the initial front.

Then:
While there are active faces left in the front:

- AF1: Select the next face ifout to be deleted from the front; in order
to avoid large elements crossing over regions of small elements, the face
forming the smallest new element is selected;

- AF2: For the face to be deleted:
- AF2.1: Select a ‘best point’ position for the introduction of a new point

ipnew;
- AF2.2: Determine whether a point exists in the already generated grid

that should be used in lieu of ipnew; if there is such a point, set this
point to ipnew;

- AF2.3: Determine whether the element formed with the selected point
ipnew crosses any given faces; if it does, select a new point as ipnew
and try again; if none can be found: skip ifout;

- AF3: Add the new element, (point, faces) to their respective lists;
- AF4: Find the generation parameters for the new faces;
- AF5: Delete the known faces(s) from the list of faces;

End While

Individual aspects of the technique (such as optimal data structures for speed,
robust checking of face intersections, filtering techniques to avoid unnecessary
work, etc.) may be found in [40, 48].

5 GENERATION OF THE DOMAIN DEFINING
GRID (STEP 1)

Given that the number of elements and points decreases with the 3rd power of
the element size, a mesh with elements whose side-lengths are n times as large
as the desired one will only contain n−3 elements as the (fine) mesh desired.



Parallel Advancing Front 7

The idea is then to generate, starting from the fine surface mesh, a mesh whose
elements are considerably larger than the grid desired. A factor of n = 10 will
lead to a mesh that is generated in roughly 1/1000-th of the time required for
the fine mesh. For n = 20, the factor is 1/8000. The mesh obtained, though,
conforms to the general size distribution required by the user, i.e. is completely
general. Moreover, it allows to determine exactly and easily which regions of
space need to be gridded (one of the problematic aspects of earlier parallel
grid generators [38, 62, 47]). In the following, we will denote this mesh as the
domain-defining grid DDG.
In order to generate the DDG, the changes required to the basic advancing
front technique are restricted to the desired element size, which has to increase
rapidly as elements are generated in the volume:

- The generation parameters for the initial front (Step AG3 above) are mul-
tiplied by the increase factor ci allowed for each face removed from the
front. Typical values are: ci = 1.5− 1.7.

- When a new point is added to the front, the grid generation parameters
of the points belonging to the face being removed ifout are multiplied
by ci and used instead of the usual ones (which are obtained from the
background grid and sources, see step AF4 above).

Note that as the advancing front technique always removes the face generating
the smallest element from the front, no incompatibilities in element size appear
when these changes are invoked. Thus, the generation of the DDG is of the
same robustness as the basic underlying scalar AFT.
In practice one observes that the total number of extra points required to fill
up the complete volume is of the order of the points on the boundary while
element quality does not suffer.

6 LOAD BALANCING OF THE DOMAIN DEFINING
GRID (STEP 2)

Given the DDG, the next task is to subdivide this mesh so as to obtain
regions in which roughly the same numbers of elements will be generated.
A number of load balancing techniques and codes have been developed over
the last two decades [66, 23, 65, 39, 31, 32]. In principle, any of these can be
used in order to obtain the subdivision required. For the results shown here,
we used (FESPLIT), which offers the possibility of subdividing grids based
on the advancing front/greedy, recursive coordinate/moment bisection, or via
spacefilling curves. Once an initial subdivision is obtained, FESPLIT improves
the load balance (e.g. surface to volume ratios, continuity of subdivisions, etc.)
using a diffusion technique.



8 Rainald Löhner

7 GENERATION OF THE FINAL MESH (STEP 3)

Once the subdivision of space is obtained, the mesh is generated in parallel.
The technique used here is the ‘inside-out’ procedure first described in [38, 62],
and consists in 4 passes, which are exemplified in Figure 2.

- Pass 1: The zones inside the subdivision domains are generated in parallel
(see Figure 2a);

- Pass 2: The zones bordering the regions, which are left empty after pass 1,
are meshed, in parallel, by pairing two domains at a time; by using a
colouring technique, most of these inter-domain regions can be meshed
completely in parallel (see Figure 2b);

- Pass 3: The zones bordering more than two regions (groups of domains),
which are left empty after pass 2, are meshed, in parallel, by combining
three or more domains at a time; as before, most of these inter-domain re-
gions can be meshed completely in parallel by using a colouring technique;

- Pass 4: If required, the remaining regions are meshed on processor 1.

The following changes to the basic advancing front technique are required in
order to obtain a reliable parallel meshing algorithm:

- If any of the points of the face to be removed lies outside the local DDG,
the face is marked as prohibited and skipped;

- If the ‘best point’ position for the introduction of a new point lies outside
the local DDG, the face is marked as prohibited and skipped;

- If any of the edges of the face to be removed ifout lies outside the local
DDG, the face is marked as prohibited and skipped; this test is carried
out by using a neighbour to neighbour traversal test between the points
of the edge;

- If ipnew is on the both the inter-processor boundary of the DDG and the
actual surface of the domain: the face is marked as prohibited and skipped;

- When assigning the faces and points to the local DDG, a conservative
approach is taken; i.e. should an active front point coincide with the points
of the DDG, all the surrounding DDG elements are tested to see if the point
should be assigned to the present domain.

It is important to emphasize that all data is kept local. The list of elements
and point being generated, the active front, and all other arrays are stored in
the processor where they are being generated.

8 REDISTRIBUTION OF THE MESH (STEP 4)

After the parallel advancing front has completed the mesh, the pieces gen-
erated in each of the individual passes will be scattered among the different
processors. This is particularly the case if a 4th Pass was required. In order to



Parallel Advancing Front 9

arrive at a consistent mesh, the elements and points need to be redistributed
and doubly defined points need to be removed.
Given that for each point the host element in the DDG is known, and that
for each element of the DDG the processor it has been assigned to is also
known, it is an easy matter so send the elements and the associated points to
the processors they need to be. Each element is sent (if required; the majority
already reside in the memory of the target processor) to the lowest processor
assigned via points from the DDG. Doubly defined points are removed using
an octree, so that this operation has O(N log(N)) complexity.

The next step is to find the correlation between the points of neighbouring
processors. In order to keep the procedure as general as possible, the following
algorithmic steps are taken:

- The bounding box of each domain is computed;
- The bounding boxes of other domains that overlap the bounding box of

each domain are determined; this determins a list of possible neighbouring
domains;

- Each pair of possible neighbouring domains is tested in depth using octrees;
in this way, the lists of neighbouring domains and points are obtained (so-
called send/receive lists).

9 MESH IMPROVEMENT (STEP 5)

After the generation of the mesh using the parallel advancing front technique
(or any other technique for that matter) has been completed, the mesh quality
is improved by a combination of several algorithms, such as:

- Diagonal swapping,
- Removal of Bad Elements,
- Laplacian/Elasticity smoothing, and
- Selective mesh movement.

One should emphasize that mesh improvement may require CPU times that
are comparable to those required by the basic grid generation technique, mak-
ing it imperative to fully parallelize this necessary step as well. All of these
procedures have been implemented and are running in parallel (shared locally
via OMP and distributed globally via MPI). At the boundaries between pro-
cessors, the procedures listed above would require a considerable amount of
testing and information transfer. For this reason, it was decided not to allow
any changes for the external faces of each subdomain. In order to improve
the mesh in these regions as well, the DDG is redistributed among processors
for a second time. The first distribution is taken as a starting point. Then,
1-2 extra layers of elements are added to the each domain idomn from the
neighbouring domains jdomn for which idomn < jdomn. The elements of the
generated (and smoothed) mesh are then redistributed as before.



10 Rainald Löhner

10 EXAMPLES

The 2nd generation parallel grid generator described above has been in op-
eration for approximately a year. It is still undegoing considerable changes
and improvements, so the numbers quoted may improve over time. In the
sequel nproc denotes the number of mpi processes (i.e. subdomains), while
nprol denotes the number of shared-memory (OpenMP) cores used per mpi
process/subdomain. The total number of cores employed is then given by
ncore=nproc*nprol. The tables also quote the absolute (els/sec) and relative
(els/sec/core) grid generation speeds achieved. Note that for perfect scaling,
the relative grid generation speed should stay constant.

10.1 Garage

This example was taken from a blast simulation carried out for an office
complex. The outline of the domain, as well as the trace of the domain defining
grid partition on the surface is shown in Figure 3a. Figures 3a-c show the trace
of the domain defining grid partition on the surface as well as the fronts after
the parallel grid generation passes using 64 domains (mpi processors) for a
finer mesh. These steps are shown in more detail in Figures 3d-k. Table 1 gives
a compilation of timings for different mesh sizes, domains and processors on
different machines. One may note that: a) Generating the 121 M mesh on
one 8-core shared memory node (i.e. nproc=1, nprol=8) is slower than the
distributed memory equivalent (i.e. nproc=8, nprol=1); b) The number of
elements per core should exceed a minimum value (typically of the order of
2-4 Mels) in order to reach a generation speed per core that is acceptable;
c) The local OMP scaling improves as the number of elements in each domain
is increased; d) It only takes on the order of five minutes to generate a mesh
of 121 Mels on 256 cores (nproc=32, nprol=8).

Figures 3a-c Garage: DDG and Parallel Grid Generation



Parallel Advancing Front 11

Figures 3d-k Garage: Front After Each Parallel Grid Generation Step

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Xeon(1) 1 8 8 120 M 2,293 52,333 6,542
SGI ITL 8 1 8 121 M 1,605 75,389 9,423
SGI ITL 8 8 64 121 M 516 234,496 3,664
Cry AMD 8 1 8 121 M 2,512 48,169 6,021
Cry AMD 16 1 16 121 M 1,954 61,924 3,870
Cry AMD 32 1 32 121 M 1,209 100,082 3,128
SGI ITL 32 8 256 121 M 316 383,293 1,497
Cry AMD 64 1 64 972 M 6,048 160,714 2,511
SGI ITL 64 8 512 1010 M 2,504 403,354 788

Table 1. Garage

10.2 Generic City Center

This example was taken from a recent blast and dispersion simulation. The
outline of the domain, as well as the active front after each of the parallel grid
generation passes for 32 processors (mpi domains) are shown in Figures 4a-c.
Figures 4d-n show the active front after the generation passes in more detail.
Table 2 gives a compilation of timings for different mesh sizes, domains and
processors on different machines. One may observe the same general trends
as observed for the previous case.



12 Rainald Löhner

Figures 4a-c Generic City Center: Domain Defining Grid Partition and Parallel Grid Generation

Figures 3d-n Generic City Center: Parallel Grid Generation

10.3 Shuttle Ascent Configuration

This example has been used repeatedly for benchmarking purposes. The out-
line of the domain may be seen in Figure 5a. The trace of the domain defining
grid partition on the surface is shown in Figures 5b,c. Figures 5d,e show the
active front after the first generation pass using 8 domains (mpi processors).



Parallel Advancing Front 13

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Cry AMD 32 1 32 135 M 1,824 74,013 2,312
SGI ITL 16 8 128 135 M 556 242,805 1,897
SGI ITL 32 1 32 135 M 977 138,178 4,318
SGI ITL 32 2 64 135 M 754 179,045 2,797
SGI ITL 32 4 128 135 M 571 236,427 1,847
SGI ITL 32 8 256 135 M 488 276,639 1,080

Table 2. Generic City Center

This mesh had approximately 120 Mels. Table 3 gives a brief compilation of
timings.

Figures 5a-c Shuttle: Outline of Domain and DDG Partition

Figures 5d,e Shuttle: Front After 1st Parallel Grid Generation Pass



14 Rainald Löhner

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Xeon 8 1 8 27 M 872 30,963 3,870
Xeon 8 1 8 108 M 3,128 34,526 4,315

Table 3. Shuttle

11 General Observations

While the first parallel grid generation pass (i.e. generating elements inside
each domain) scales perfectly, the scaling can degrade quikly for the subse-
quent passes (i.e. those that mesh the inter-domain boundary regions). The
recourse taken here is to simply generate the remaning elements in one pro-
cessor once the global number of remaning faces drops below 0.5 Mfaces. We
are presently working on ways to mitigate this ‘logarithmic trap’.

12 Conclusions and Outlook

A scalable, parallel advancing grid generation technique has been developed
for complex geometries and meshes with large size variations. The key innova-
tion compared to previous techniques is the use of a domain-defining grid that
has the same fine surface triangulation as the final mesh desired, but a much
coarser interior mesh. In this way, the domain to be gridded is uniquely de-
fined, overcoming a shortcoming of previous approaches. This domain-defining
grid is then partitioned according to the estimated number of elements to be
generated, allowing for a balanced distribution of work among the processors.
The domain defining grid is also used to redistribute the elements and points
after grid generation, and during the subsequent mesh improvement.

Timings show that the proposed approach is scalable and able to produce
large grids of high quality in a modest amount of clocktime.

With the proposed parallel grid generator, a major impediment to a com-
pletely scalable simulation pipeline (grid generation, solvers, post-processing)
has been removed, opening the way for truly large-scale computations using
unstructured, body-fitted grids.

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725, and also resources of the DoD High Performance Computing
Modernization Program. This support is greatfully acknowledged.



Parallel Advancing Front 15

References

1. A. Alleaume, L. Francez, M. Loriot and N. Maman - Large OutofCore Tetra-
hedral Meshing; Proc. 16th International Meshing Roundtable, Sandia National
Laboratory, Oct. 15-17 (2007).

2. H. Andrae, E. Ivanov, O. Gluchshenko, A. Kudryavtsev - Automatic Parallel
Generation of Tetrahedral Grids by Using a Domain Decomposition Approach;
J. Comp. Math. and Math. Phys. 48, 8, 1448-1457 (2008).

3. T.J. Baker - Developments and Trends in Three-Dimensional Mesh Generation.
Appl. Num. Math. 5, 275-304 (1989).

4. J.D. Baum, H. Luo and R. Löhner - Numerical Simulation of a Blast Inside a
Boeing 747; AIAA-93-3091 (1993).

5. J.D. Baum, H. Luo and R. Löhner - Numerical Simulation of Blast in the World
Trade Center; AIAA-95-0085 (1995).

6. J.D. Baum, H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman - A
Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-
0795 (1996).

7. J.D. Baum, H. Luo and R. Löhner - The Numerical Simulation of Strongly Un-
steady Flows With Hundreds of Moving Bodies; AIAA-98-0788 (1998).

8. J.D. Baum, H. Luo, E. Mestreau, R. Löhner, D. Pelessone and C. Charman -
A Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Frag-
mentation; AIAA-99-0794 (1999).

9. G.E. Blelloch, J.C. Hardwick, G.L. Miller and D. Talmor - Design and Imple-
mentation of a Practical Parallel Delaunay Algorithm; Algorithmica, 24, 243-269
(1999).

10. L.P. Chew, N. Chrisochoides and F. Sukup - Parallel Constrained Delaunay
Meshing; Proc. 1997 Workshop on Trends in Unstructured Mesh Generation,
June (1997)

11. N. Chrisochoides and D. Nave - Simultaneous Mesh Generation and Partitioning
for Delaunay Meshes; pp. 55-66 in Proc. 8th Int. Meshing Roundtable, South Lake
Tahoe, October (1999).

12. N. Chrisochoides and D. Nave - Parallel Delaunay Mesh Generation Kernel; Int.
J. Num. Meth. Eng. 58, 161-176 (2003).

13. N. Chrisochoides - Parallel Mesh Generation; pp 237-259 in Numerical Solution
of Partial Differential Equations on Parallel Computers, (A.M. Bruaset, A. Tveito
eds.), Springer (2005).

14. H.L. de Cougny, M.S. Shephard and C. Ozturan - Parallel Three-Dimensional
Mesh Generation; Computing Systems in Engineering 5, 311-323 (1994).

15. H.L. de Cougny, M.S. Shephard and C. Ozturan - Parallel Three-Dimensional
Mesh Generation on Distributed Memory MIMD Computers; Tech. Rep.
SCOREC Rep. # 7, Rensselaer Polytechnic Institute (1995).

16. H. de Cougny and M.Shephard - Parallel Volume Meshing Using Face Removals
and Hierarchical Repartitioning; Comp. Meth. Appl. Mech. Eng. 174(3-4), 275-
298 (1999).

17. E. Darve and R. Löhner - Advanced Structured-Unstructured Solver for Elec-
tromagnetic Scattering from Multimaterial Objects; AIAA-97-0863 (1997).

18. L.A. Freitag and C.-Ollivier Gooch - Tetrahedral Mesh Improvement Using
Swapping and Smoothing; Int. J. Num. Meth. Eng. , 40, 3979-4002 (1997).



16 Rainald Löhner

19. J. Frykestig - Advancing Front Mesh Generation Techniques with Application
to the Finite Element Method; Pub. 94:10, Chalmers University of Technology;
Göteborg, Sweden (1994).

20. J. Galtier and P.L. George - Prepartitioning as a Way to Mesh Subdomains in
Parallel; Special Symposium on Trends in Unstructured Mesh Generation 107-
122, ASME/ASCE/SES (1997).

21. P.L. George, F. Hecht and E. Saltel - Automatic Mesh Generator With Specified
Boundary; Comp. Meth. Appl. Mech. Eng. 92, 269-288 (1991).

22. P.L. George - Tet Meshing: Construction, Optimization and Adaptation; Proc.
8th Int. Meshing Roundtable, South Lake Tahoe, October (1999).

23. R. von Hanxleden and L.R. Scott - Load Balancing on Message Passing Archi-
tectures; J. Parallel and Distr. Comp. 13, 312-324 (1991).

24. O. Hassan, L.B. Bayne, K. Morgan and N. P. Weatherill - An Adaptive Un-
structured Mesh Method for Transient Flows Involving Moving Boundaries; pp.
662-674 in Computational Fluid Dynamics ’98 (K.D. Papailiou, D. Tsahalis, J.
Périaux and D. Knörzer eds. ) Wiley (1998).

25. Y. Ito, A.M. Shih, A.K. Erukala, B.K. Soni, A. Chernikov, N. Chrisochoides and
K. Nakahashi - Parallel Unstructured Mesh Generation by an Advancing Front
Method; J. Mathematics and Computers in Simulation 75, 5-6, 200-209 (2007).

26. E.G. Ivanov, H. Andrae and A.N. Kudryavtsev - Domain Decomposition Ap-
proach for Automatic Parallel Generation of Tetrahedral Grids;Int. Math. J.
Comp. Meth. in App. Math. 6, 2, 178-193 (2006).

27. H. Jin and R.I. Tanner - Generation of Unstructured Tetrahedral Meshes by the
Advancing Front Technique; Int. J. Num. Meth. Eng. 36, 1805-1823 (1993).

28. W. Jou - Comments on the Feasibility of LES for Commercial Airplane Wings;
AIAA-98-2801 (1998).

29. C. Kadow and N. Walkington - Design of a Projection-Based Parallel Delaunay
Mesh Generation and Refinement Algorithm; Proc. Fourth Symp. on Trends in
Unstructured Mesh Generation (2003).

30. A. Kamoulakos, V. Chen, E. Mestreau and R. Löhner - Finite Element Mod-
elling of Fluid/ Structure Interaction in Explosively Loaded Aircraft Fuselage
Panels Using PAMSHOCK/ PAMFLOW Coupling; Conf. on Spacecraft Struc-
tures, Materials and Mechanical Testing, Noordwijk, The Netherlands, March
(1996).

31. G. Karypis and V. Kumar - A Parallel Algorithm for Multilevel Graph Parti-
tioning and Sparse Matrix Ordering; J. of Parallel and Distributed Computing
48, 71 - 85 (1998).

32. G. Karypis and V. Kumar - Parallel Multilevel k-way Partitioning Scheme for
Irregular Graphs; SIAM Review 41, 2, 278 - 300 (1999).

33. B.G. Larwood, N.P. Weatherill, O. Hassan and K. Morgan - Domain Decompo-
sition Approach for Parallel Unstructured Mesh Generation; Int. J. Num. Meth.
Eng. 58, 2, 177-188 (2003).

34. J. Liu, K. Kailasanath, R. Ramamurti, D. Munday, E. Gutmark and R. Löhner
- Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Prop-
erties; AIAA J. 47, 8, 1849-1864 (2009).

35. R. Löhner - Some Useful Data Structures for the Generation of Unstructured
Grids; Comm. Appl. Num. Meth. 4, 123-135 (1988).

36. R. Löhner and P. Parikh - Three-Dimensional Grid Generation by the Advancing
Front Method; Int. J. Num. Meth. Fluids 8, 1135-1149 (1988).



Parallel Advancing Front 17

37. R. Löhner - Three-Dimensional Fluid-Structure Interaction Using a Finite Ele-
ment Solver and Adaptive Remeshing; Comp. Sys. in Eng. 1, 2-4, 257-272 (1990).

38. R. Löhner, J. Camberos and M. Merriam - Parallel Unstructured Grid Genera-
tion; Comp. Meth. Appl. Mech. Eng. 95, 343-357 (1992).

39. R. Löhner and R. Ramamurti - A Load Balancing Algorithm for Unstructured
Grids; Comp. Fluid Dyn. 5, 39-58 (1995).

40. R. Löhner - Extensions and Improvements of the Advancing Front Grid Gener-
ation Technique; Comm. Num. Meth. Eng. 12, 683-702 (1996).

41. R. Löhner - Regridding Surface Triangulations; J. Comp. Phys. 126, 1-10 (1996).
42. R. Löhner - Progress in Grid Generation via the Advancing Front Technique;

Engineering with Computers 12, 186-210 (1996).
43. R. Löhner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone and C. Charman

- Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and
Adaptive Unstructured Grids; AIAA-98-2419

44. (1998).
45. R. Löhner - Renumbering Strategies for Unstructured- Grid Solvers Operating

on Shared- Memory, Cache- Based Parallel Machines; Comp. Meth. Appl. Mech.
Eng. 163, 95-109 (1998).

46. R. Löhner, C. Yang and E. Oñate - Viscous Free Surface Hydrodynamics Using
Unstructured Grids; Proc. 22nd Symp. Naval Hydrodynamics, Washington, D.C.,
August (1998).

47. R. Löhner - A Parallel Advancing Front Grid Generation Scheme; Int. J. Num.
Meth. Eng. 51, 663-678 (2001).

48. R. Löhner - Applied CFD Techniques, 2nd Edition; J. Wiley & Sons (2008).
49. R. Löhner, J.R. Cebral, F.F. Camelli, S. Appanaboyina, J.D. Baum, E.L.

Mestreau and O. Soto - Adaptive Embedded and Immersed Unstructured Grid
Techniques; Comp. Meth. Appl. Mech. Eng. 197, 2173-2197 (2008).

50. D.L. Marcum and N.P. Weatherill - Unstructured Grid Generation Using Iter-
ative Point Insertion and Local Reconnection; AIAA J. 33, 9, 1619-1625 (1995).

51. D.J. Mavriplis and S. Pirzadeh - Large-Scale Parallel Unstructured Mesh Com-
putations for 3-D High-Lift Analysis; ICASE Rep. 99-9 (1999).

52. E. Mestreau, R. Löhner and S. Aita - TGV Tunnel-Entry Simulations Using a
Finite Element Code with Automatic Remeshing; AIAA-93-0890 (1993).

53. E. Mestreau and R. Löhner - Airbag Simulation Using Fluid/Structure Cou-
pling; AIAA-96-0798 (1996).

54. K. Morgan, P.J. Brookes, O. Hassan and N.P. Weatherill - Parallel Processing
for the Simulation of Problems Involving Scattering of Electro-Magnetic Waves;
in Proc. Symp. Advances in Computational Mechanics (L. Demkowicz and J.N.
Reddy eds.) (1997).

55. T. Okusanya and J. Peraire - Parallel Unstructured Mesh Generation; Proc. 5th
Int. Conf. Num. Grid Generation in CFD and Related Fields, Mississippi, April
(1996).

56. T. Okusanya and J. Peraire - 3-D Parallel Unstructured Mesh Generation; Proc.
Joint ASME/ASCE/SES Summer Meeting (1997).

57. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz - Adaptive Remeshing
for Compressible Flow Computations; J. Comp. Phys. 72, 449-466 (1987).

58. J. Peraire, J. Peiro, L. Formaggia K. Morgan and O.C. Zienkiewicz - Finite
Element Euler Calculations in Three Dimensions; Int. J. Num. Meth. Eng. 26,
2135-2159 (1988).



18 Rainald Löhner

59. J. Peraire, K. Morgan and J. Peiro - Unstructured Finite Element Mesh Gen-
eration and Adaptive Procedures for CFD; AGARD-CP-464, 18 (1990).

60. J. Peraire, K. Morgan, and J. Peiro - Adaptive Remeshing in 3-D; J. Comp.
Phys. (1992).

61. R. Said, N.P. Weatherill, K. Morgan and N.A. Verhoeven - Distributed Parallel
Delaunay Mesh Generation; to appear in Comp. Meth. Appl. Mech. Eng. (1999).

62. A. Shostko and R. Löhner - Three-Dimensional Parallel Unstructured Grid Gen-
eration; Int. J. Num. Meth. Eng. 38, 905-925 (1995).

63. R. Tilch, A. Tabbal, M. Zhu, F. Decker and R. Löhner - Combination of Body-
Fitted and Embedded Grids for External Vehicle Aerodynamics; Engineering
Computations 25, 1, 28-41 (2008).

64. U. Tremel, K.A. Sorensen, S. Hitzel, H. Rieger, O. Hassan and N.P. Weatherill
- Parallel Remeshing of Unstructured Volume Grids for CFD Applications; Int.
J. Num. Meth. Fluids 53, 8, 1361-1379 (2006).

65. A. Vidwans, Y. Kallinderis and V. Venkatakrishnan - A Parallel Load Balancing
Algorithm for 3-D Adaptive Unstructured Grids; AIAA-93-3313-CP (1993).

66. D. Williams - Performance of Dynamic Load Balancing Algorithms for Unstruc-
tured Grid Calculations; CalTech Rep. C3P913 (1990).

67. N.P. Weatherill - Delaunay Triangulation in Computational Fluid Dynamics;
Comp. Math. Appl. 24, 5/6, 129-150 (1992).

68. N.P. Weatherill and O. Hassan - Efficient Three-Dimensional Delaunay Triangu-
lation with Automatic Point Creation and Imposed Boundary Constraints; Int.
J. Num. Meth. Eng. 37, 2005-2039 (1994).

69. S. Yoshimura, H. Nitta, G. Yagawa and H. Akiba - Parallel Automatic Mesh
Generation Method of Ten-Million Nodes Problem Using Fuzzy Knowledge
Processing and Computational Geometry; Proc. 4th World CongĊomp. Mech.
Buenos Aires, Argentina, July (1998).


